We enable business and digital transformation decisions through the delivery of cutting-edge ICT solutions and products...
Artificial intelligence is a unique part of the emerging tech landscape, with years of science fiction shaping our expectations of AI capabilities. Today, the reality is that AI is much more of an… Continue reading
A lack of skilled people in machine learning technology continues to stymie the AI revolution. That’s why smart companies invest as much in cultural change as technology adoption.
We’re awash… Continue reading
First, there was mobile device management, the mobile application management, and enterprise mobility software management. Now EMM suites are evolving into unified endpoint management platforms.
Get ready for some significant changes in the way enterprises manage… Continue reading
Boomerang, Otter, and Voicera are three new-breed voice and AI enterprise productivity apps to help you get more done.
Boomerang (free) is an alternative email client that adds… Continue reading
We look at the role of artificial intelligence and chatbots in IT service management. Artificial intelligence (AI) technology is serving an important role in IT service management (ITSM) as organizations seek to… Continue reading
Of the three words that comprise customer relationship management, one word binds the other two. As necessity and competition dictate that CRM upgrade itself with artificial intelligence and flights… Continue reading
Machine learning isn’t only in the cloud. Microsoft is bringing it to PCs in the next Windows 10 release. Here’s how to get started now.
We’re not far away from a new release of Windows 10, and with it plenty of new APIs for your applications. One big change is support for running trained machine learning models as part of Windows applications, taking advantage of local GPUs to accelerate machine learning applications.
Building a machine learning application can be a complex process. Training a model can require a lot of data, and a considerable amount of processing power. That’s fine if you’ve got access to a cloud platform and lots of bandwidth, but what if you want to take an existing model from GitHub and run it on a PC?
Trained machine learning models are an ideal tool for bringing the benefits of neural networks and deep learning to your applications. All you should need to do is hook up the appropriate interfaces, and they should run as part of your code. But with many machine learning frameworks and platforms, there’s a need for a common runtime that can use any of the models out there. That’s where the new Windows machine learning tools come into play, offering Windows developers a platform to run existing machine learning models in their applications, taking advantage of a developing open standard for exchanging machine learning models. Continue reading
IT vendors have leaped on the artificial intelligence/machine learning bandwagon, spreading a level of confusion that threatens potential technology benefits with AI washing.
As many in the enterprise IT community will remember, technology suppliers succeeded in roundly confusing buyers in the early part of the millennium by “greenwashing” their products and services – or in other words, exaggerating the true extent of their environmentally-friendly credentials – thereby shooting themselves in the foot and, arguably, putting the brakes on the market.
But it seems that many have learned little from the experience. According to Gartner, the IT industry is now pursuing an equally self-destructive strategy of “AI (artificial intelligence) washing” – by applying the AI label too indiscriminately, suppliers are once again bamboozling potential customers, who are putting off making buying decisions as a result.
So just how true is this contention and, if it is valid, what impact is it having on the market to date? Nick Patience, research vice-president at 451 Research, believes that AI in the enterprise software space is certainly overhyped, and adoption has lagged behind uptake in the consumer market.
“A lot of startups are claiming to do AI when they’re using rules-based automation,” he says. “Suppliers also say they have AI systems, but it’s actually much more narrowly defined machine learning software that does image recognition or leads scoring.
There’s nothing wrong with that, but it’s never going to be a robot that can do many of the things humans can do, so you have to cut through the hype to know what you’re getting.”
Emma Kendrew, AI lead for Accenture Technology, agrees that the hype cycle is reaching a peak, driven by busy corporate marketing machines hoping to take advantage of the possibilities opened up by big data and the cloud, as well as burgeoning customer interest. Continue reading
Throwing artificial intelligence (AI) at your data to answer business questions is like using a tornado to blow out a match. In other words, just because artificial intelligence tools can provide answers doesn’t mean you should use them. If good old business intelligence tools do the job just fine, stick with what you know. But AI is a great way to uncover information hidden within vast amounts of data – as long as you’re willing to use the information that surprises you, according to Jana Eggers, CEO of Nara Logics, a synaptic intelligence company based in Cambridge, Mass.
“If you aren’t willing to learn, don’t do an AI project. Do a regular analytics project,” Eggers said during her presentation at the TDWI Accelerate conference in Boston earlier this year.
That’s sound advice in a time when all we hear about is the power and promise of AI technologies like cognitive computing, natural language processing, and machine learning. Using AI judiciously can save companies a whole lot of time and money on a tech that’s exciting but may not be appropriate for the job. It’s also important to carefully Continue reading
Amazon hopes to push Alexa into the office. At the same time, Cisco and Microsoft also see the potential for voice-activated A.I. assistants to automate mundane tasks such as starting video conferences and booking meeting rooms.-Alexa for Business
Much as smartphones did in the late 2000s, voice-activated A.I. assistants like Siri, Alexa, and Google Assistant appear poised to move from homes into the workplace. That’s the idea behind this month’s launch of Alexa for Business by Amazon’s cloud computing subsidiary, Amazon Web Services.
The virtual assistant unveiled at the company’s Re: Invent conference, is aimed at automating and simplifying a variety of tedious office tasks. It allows users to check calendars, reorder supplies, set up meetings and kick-off video conference calls using voice commands directed at its Echo devices.
Amazon is not the first to target its intelligent assistant for workplace uses. Cisco, for example, announced its Spark Assistant last month; it’s designed specifically to take some of the pain out of organizing video conferences. Microsoft, meanwhile, has integrated Cortana with its Office 365 applications. Continue reading